
Ph.D. QUALIFYING EXAMINATION – PART A 

 

Tuesday, January 11, 2022, 1:00 – 5:00 P.M. 

 

 Work each problem on a separate sheet(s) of paper and put your identifying number on 

each page.  Do not use your name.  Each problem has equal weight.  A table of integrals can be 

used.  Some physical constants and mathematical definitions will be provided if needed. 

 

A1.  An asteroid of mass 𝑚 approaches the earth with impact parameter 𝑏 and relative velocity 

𝑣. Ignore the influence of the Sun and Moon on the asteroid and the Earth.  

a) What is the initial angular momentum of the asteroid with respect to the Earth?  

b) If the Earth were a point mass, what would the closest approach of the asteroid to the Earths 

center be? Express your answer in terms of 𝑏, 𝑣, 𝑅𝑒 (the actual radius of the Earth) and 𝑔 (the 

acceleration due to gravity on Earth’s surface)  

c) Will the asteroid hit the Earth? Take 𝑏 = 20𝑅𝑒 and 𝑣 = 1000 𝑚/𝑠. 

 

A2.  A relativistic 𝐾0 meson (rest mass 𝐸𝐾0 = 497.6𝑀𝑒𝑉)  is traveling with a speed of 𝑣0 = 0.9𝑐 

when it decays into a 𝜋+ meson and a 𝜋− meson (both with rest mass 𝐸𝜋± = 139.6𝑀𝑒𝑉. What 

are the greatest and the least speeds that the mesons may have? 

 

 

A3.  Consider two interacting particles. The first particle has spin-1 and the second particle has 

spin-1/2. 

a) What are the possible values for the total spin angular momentum of the two-particle system? 

How many independent (spin) states does the system have? 

 

b) Suppose the two particles interact via the Hamiltonian that is given by  

𝐻 =
𝑎

ℏ2
𝑆1
⃑⃑  ⃑  ∙ 𝑆2

⃑⃑  ⃑ +
𝑏

ℏ
(𝑆1𝑧 + 𝑆𝑧) 

 

 Find all the eigenvalues of the Hamiltonian. 

 



A4.  A sphere of homogeneous linear dielectric material is placed in an otherwise uniform 

electric field 𝐸⃑ 0 = 𝐸0𝑧̂ .  The sphere has a radius a and a dielectric constant 𝜅 = 𝜀𝑟 =
𝜀

𝜀0
 . 

a)  Determine the electric potential inside and outside the dielectric sphere. 

b)  Determine the electric field inside the dielectric sphere. 

c)  Determine the polarization 𝑃⃑  inside the dielectric sphere. 

Recall:  If there is azimuthal symmetry and the charge density, 𝜌 = 0, the general solution to 

∇2V = 0 in spherical coordinates is:  𝑉(𝑟, 𝜃) = ∑ (𝐴ℓ𝑟
ℓ + 

𝐵ℓ

𝑟ℓ+1)
∞
ℓ=0  𝑃ℓ (cos 𝜃),  where 

𝑃ℓ(cos 𝜃) is the Legendre polynomial.  Note:  𝑃0(𝑥) = 1,   𝑃1(𝑥) = 𝑥, 𝑃2(𝑥) = (3𝑥2 − 1)/2  

and  ∫ 𝑃ℓ
 1

−1
(𝑥) 𝑃ℓ′(𝑥)𝑑𝑥 =

2𝛿
ℓℓ′

2ℓ+1
 . 

 

 

A5.  Two-disk pendulum 

Consider two uniform disks, each of mass M and radius R. They are rigidly 

connected by a massless rod such that their centers are a distance L apart. 

One of the disks (the upper one in the picture) is pivoted by a frictionless pin 

through its center.  

a) Find the frequency of small oscillations the system performs under the 

influence of gravity. 

 

b) How does the frequency change if the second disk (the lower one in the 

picture) is mounted to the rod by a frictionless bearing at its center so that it 

is free to spin? 

 

 

 

 

 

 



A6.  Consider a one-dimensional harmonic oscillator with mass 𝑚 and electric charge 𝑒. At the 

time 𝑡 = 0, a uniform electric field 𝐹 is suddenly added to the system. Namely, the Hamiltonian 

of the system is given by 

𝐻 =

{
 

 
   

𝑝2

2𝑚
+ 

𝑚 𝜔2𝑥2

2
                (𝑡 < 0)

𝑝2

2𝑚
+ 

𝑚 𝜔2𝑥2

2
− 𝑒𝐹𝑥     (𝑡 ≥ 0).

  

 

You may use the fact that the Hermite polynomials 𝐻𝑛(𝑧) satisfy the following equations: 

(
𝑑2

𝑑𝑧2
− 2𝑧 

𝑑

𝑑𝑧
+ 2𝑛)𝐻𝑛(𝑧) = 0. 

𝑒−𝑠2+2𝑠𝑧 = ∑
𝑠𝑛

𝑛!
𝐻𝑛(𝑧).

∞

𝑛=0

 

∫ 𝐻𝑛(𝑧)𝐻𝑚(𝑧)𝑒−𝑧2
𝑑𝑧 =  √𝜋 2𝑛𝑛! 𝛿𝑛𝑚.

∞

−∞

 

(1) At 𝑡 < 0, the solution of the stationary Schrödinger equation for an 𝑛-th energy eigenstate is 

given by  

𝜓𝑛(𝑥) = 𝐻𝑛 (
𝑥

𝜆
) 𝑓(𝑥) 

𝜆 =  √
ℏ

𝑚𝜔
 

𝜀𝑛 =  ℏ𝜔 ( 𝑛 + 
1

2
 )  (𝑛 = 0, 1, 2, … ) 

 

Find the function 𝑓(𝑥) including a proper normalization factor.  

 

 

 



(2) At 𝑡 ≥ 0, solve the stationary Schrödinger equation to find the energy eigenstates 𝐸𝑛 and 

normalized eigenfunctions, 𝜑𝑛(𝑥)  (𝑛 = 0,1,2… ). You may use the result 𝜓𝑛(𝑥) from 1).  

 

(3) Assume that the harmonic oscillator is in its ground state at 𝑡 < 0. Calculate the probability 

that this state appears in the 𝑛-th eigenstate at 𝑡 ≥ 0. Also, discuss what kind of probabilistic 

distribution it follows.  

Hint: At 𝑡 ≥ 0, the wavefunction in the time-dependent Hamiltonian is given by 

Ψ(𝑥, 𝑡) = ∑ 𝐴𝑛𝜑𝑛(𝑥)𝑒−𝑖𝐸𝑛𝑡/ℏ

∞

𝑛=0

, 

where 𝐴𝑛 is an expansion coefficient with respect to the eigenfunctions 𝜑𝑛(𝑥).  

 

  



Ph.D. QUALIFYING EXAMINATION – PART B 

 

Wednesday, January 12, 2022, 1:00 – 5:00 P.M. 

 

 Work each problem on a separate sheet(s) of paper and put your identifying number on 

each page.  Do not use your name.  Each problem has equal weight.  A table of integrals can be 

used.  Some physical constants and mathematical definitions will be provided if needed.   

 

B1. Consider a point particle of mass 𝑚 subject to a gravitational force −𝑚𝑔𝑧̂  and constrained to move 

on the 2-dimensional frictionless surface of a lower hemisphere of radius 𝑅 centered at the origin. 

a) Write down the Lagrangian for the problem, and from it find the Lagrange-Euler equations for 

the motion of the particle in 𝑟, 𝜃, 𝜙 spherical coordinates.  

b) The particle is orbiting the hemisphere at a constant polar angle 𝜃0 with respect to the 𝑧-axis, 

where 
𝜋

2
< 𝜃0 < 𝜋. At time 𝑡 = 0, the particle is at (𝑟, 𝜃, 𝜙) = (𝑅, 𝜃0, 0) and its velocity is in the 

+𝜙̂ direction. Find the coordinates of the particle for 𝑡 > 0.  

c) Suppose the orbiting particle in part (b) is given an instantaneous impulse in the −𝜃 direction 

such that the resulting trajectory reaches the minimum polar angle 𝜃1, where 
𝜋

2
< 𝜃𝑚𝑖𝑛 < 𝜃0. 

Find the equation that describes the maximum polar angle 𝜃𝑚𝑎𝑥 that the particle can take in 

terms of known parameters of the problem (𝑚,𝑅, 𝜃0, 𝜃𝑚𝑖𝑛, 𝑔, not all of them have to be 

involved). Do not attempt to solve the equation for 𝜃𝑚𝑎𝑥. 

 d) In part (c), if you assume that  |𝜃𝑚𝑖𝑛 − 𝜃|  is small, then you can linearize one of the 

Lagrange-Euler equations as a harmonic oscillator equation for 𝜃 around 𝜃0. Find the frequency 

of this oscillation. 

 

 

B2.  In a carbon monoxide molecule CO, the transition from the  ℓ = 2 to the ℓ = 1 state results 

in the emission of a Δ𝐸 = 9.55 × 10−4𝑒𝑉 photon. [ℏ = 1.055 × 10−34𝐽 ⋅ 𝑠, proton mass 𝑀𝑝 =

1.67 × 10−27𝑘𝑔, mass of C is 12amu, mass of O is 16amu] 

(a) Find the moment of inertia of the molecule.  

(b) What is the bond length of this molecule? 

 

 



 

B3.  The potential due to a given local charge distribution around the origin of the coordinate 

system is given by   𝑉(𝑟 ) = 𝑘 ∫
𝜌(𝑟′⃑⃑  ⃑)

|𝑟 −𝑟′⃑⃑  ⃑|
𝑑3 𝑟′ , where 𝑘 =

1

4𝜋𝜀0
 . 

  a)  If the total charge is zero, show that the leading order term in the potential for large distances    

has the form 𝑉(𝑟 ) = 𝑘 𝑟 ∙ 𝑝 𝑟3⁄ , where the electric dipole moment is given by 𝑝 =

∫ d
3𝑟′ 𝑟′⃑⃑ 𝜚 (𝑟′⃑⃑ ). 

b)  Consider an additional point charge 𝑞 located at a point 𝑟  lying far from the dipole; the 

interaction energy is given by 𝑈 = 𝑘𝑝 ∙ 𝑞 𝑟 𝑟3⁄ . Show that we can interpret this energy as 

the interaction energy of the dipole moment with the electric field 𝐸⃑  produced by 𝑞 at the 

origin, i.e.,                     𝑈 = −𝑝 ∙ 𝐸⃑  . 

c)  Use 𝑈 = −𝑝1⃑⃑⃑⃑ ∙ 𝐸⃑  as the interaction energy of an electric dipole of moment 𝑝1⃑⃑⃑⃑  with the 

electric field 𝐸⃑  produced by a given charge distribution far from 𝑝1⃑⃑⃑⃑ . Calculate the interaction 

energy 𝑈 for a dipole-dipole interaction, i.e., for the interaction of 𝑝1⃑⃑⃑⃑  at the origin with the 

field 𝐸⃑  produced by another dipole moment 𝑝2⃑⃑⃑⃑  located at 𝑟 .   

 

 

B4.  A steady current flows in the z-direction down a long hollow cylindrical wire of inner radius 

a and outer radius b .  The current density is distributed as  𝐽  (𝑠) = 𝐾𝑠𝑧̂ for 𝑎 ≤ 𝑠 ≤ 𝑏 and equal 

zero otherwise.  K is a constant and s is the cylindrical coordinate perpendicular to the z 

direction.  The cylindrical coordinates used here are defined as follows: 

  0 ≤ 𝑠 < ∞,   0 ≤ 𝜙 ≤ 2𝜋, −∞ < 𝑧 < ∞ . 

a)  Determine the magnetic field in all three regions:  0 ≤ 𝑠 ≤ 𝑎,   𝑎 ≤ 𝑠 ≤ 𝑏,   𝑏 ≤ 𝑠 < ∞ . 

b)  Determine the vector potential, 𝐴  ,in all three regions:  0 ≤ 𝑠 ≤ 𝑎,   𝑎 ≤ 𝑠 ≤ 𝑏,   𝑏 ≤ 𝑠 < ∞ . 

Hint:  Use the fact that:  𝐵⃑ = ∇⃑⃑ × 𝐴     and in cylindrical coordinates 

            ∇⃑⃑ × 𝐴 = [
1

𝑠

𝜕𝐴𝑧

𝜕𝜙
−

𝜕𝐴𝜙

𝜕𝑧
] 𝑠̂ + [

𝜕𝐴𝑠

𝜕𝑧
−

𝜕𝐴𝑧

𝜕𝑠
] 𝜙̂ +

1

𝑠
[
𝜕(𝑠𝐴𝜙)

𝜕𝑠
−

𝜕𝐴𝑠

𝜕𝜙
] 𝑧̂ 

 

 



B5.  Absorption of ideal gas 

 

Consider a classical ideal gas consisting of atoms of mass m. The gas is at temperature T and 

pressure p. When the gas is brought into contact with a solid surface, atoms are absorbed by the 

surface if they hit it with a velocity component normal to the surface of at least v0. Atoms that hit 

the surface with normal velocity components less than v0 are reflected elastically. 

 

Derive an expression for the absorption rate W (absorbed atoms per time and area of the surface) 

as a function of the mass m, pressure p, temperature T, and v0. 

 

 

 

B6. Consider a particle with a spin of 1/2 (and mass of 1 for simplicity) in one dimension, and 

this particle follows the Hamiltonian, 

𝐻0 = 
1

2
 {𝑝2 + 𝐴(𝑥)2} + 

ℏ

2
 𝜎3

𝑑𝐴(𝑥)

𝑑𝑥
 

 

where 𝑝 =
ℏ

𝑖
 
𝑑

𝑑𝑥
 , and 𝐴(𝑥) is a smooth function and |𝐴(𝑥)| → ∞ as 𝑥 → ∞.  The 𝜎3 is one of the 

Pauli matrices: 

 

𝜎1 = (
0 1
1 0

) ,   𝜎2 = (
0 −𝑖
𝑖 0

) , 𝜎3 = (
1 0
0 −1

), 

 

that satisfy 𝜎𝑎𝜎𝑏 = 𝛿𝑎𝑏 + 𝑖 ∑ 𝜀𝑎𝑏𝑐𝜎𝑐
3
𝑐=1  where 𝜀𝑎𝑏𝑐 is the Levi-Civita symbol in three 

dimensions. 

 

1) When 𝐴(𝑥) = 𝑥, derive the energy states of the system, using the creation and annihilation 

operators: 

𝑎 =  
1

√2ℏ
 (𝑝 − 𝑖𝑥) 

𝑎† = 
1

√2ℏ
 (𝑝 + 𝑖𝑥) 

Also, show that all the non-zero energy states are doubly degenerate.  



2) For an arbitrary function 𝐴(𝑥), let us define the following operators: 

 

𝑄±  ≡  
1

√2
 {𝑄1 ± 𝑖𝑄2} 

𝑄1 ≡ 
1

2
 {𝜎1𝑝 + 𝜎2𝐴(𝑥)} 

𝑄2 ≡ 
1

2
 {𝜎2𝑝 − 𝜎1𝐴(𝑥)} 

 

2a) First show that 𝐻0 = 2 𝑄1
2 =  2 𝑄2

2 and [𝐻0, 𝑄±] = 0. 

 

2b) Then using the results of  (2a), prove that the degeneracy of energy eigenstates shown in 1) 

holds for any 𝐴(𝑥). [Hint: Consider 𝑄± |𝐸, −⟩ where |𝐸, −⟩ denotes a state with energy 𝐸 and 

lower spin.  

 

3) In the case of 𝐴(𝑥) = 𝑥, add the following interaction term 𝑉 

 

𝑉 =  𝜆 (𝑄+ + 𝑄−) =  𝜆 √ℏ (
0 𝑎
𝑎† 0

). 

 

Using degenerate perturbation theory, calculate the energy spectrum of 𝐻 = 𝐻0 +  𝑉 up to the 

first order of 𝜆.  

 

 

 

  

 

 


